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ABSTRACT

The features based on the MEL cepstrum have long dom-
inated probabilistic methods in automatic speech regogni-
tion (ASR). This feature set has evolved to maximize general
ASR performance within a Bayesian classifier framework us-
ing a common feature space. Now, however, with the advent
of the PDF projection theorem (PPT) and the class-specific
method (CSM), it is possible to design features separately
for each phoneme and compare log-likelihood values fairly
across various feature sets. In this paper, class-dependent
features are found by optimizing a set of frequency-band
functions for projection of the spectral vectors, analogous
to the MEL frequency band functions, individually for each
class. Using this method, we show significant improve-
ment over standard MEL cepstrum methods in speaker and
phoneme specific recognition.

1. INTRODUCTION

The MEL cepstrum features [1] and its derivatives have long
been the staple of automatic speech recogniton (ASR) sys-
tems. One may write the MEL cepstrum features as

z = DCT(log(A′y)), (1)

where vectory is the length-N/2+ 1 spectral vector, the
magnitude-squared DFT output and the columns ofA are
the MEL band functions [1]. The logarithm and the discrete
cosine transform (DCT) are invertible functions. There is
no dimension reduction or information loss so they may be
considered a feature conditioning step which results in more
Gaussian-like and independent features. Thus, we may con-
centrate our attention on the matrix multiplication

w = A′y. (2)

The key operation here is dimension reduction by linear pro-
jection onto a lower-dimensional space. Now, with the in-
troduction of the class-specific method (CSM) and the PDF
projection theorem (PPT) [2], one is free to explore class-
dependent features within the rigid framework of Bayesian
classification. Some work has been done in class-dependent
features [3],[4] however existing approaches are only ableto
use different features through the use of compentation factors
to make likelihood comparisons fair. Such approaches work
if the class-dependent feaure transformations are restricted to
certain limited sets. Both methods fall short of the potential
of the PPT which makes no restriction on the type of feature

transformations available to each phoneme. Under CSM, the
“common feature space” is the time-series (raw data) itself.
Feature PDFs, evaluated on different feature spaces are pro-
jected back to the raw data space where the likelihood com-
parison is done. Besides its generality, the CSM paradigm
has many additional advantages as well. For example there
is a quantitative class-dependent measure to optimize thatal-
lows the design of the class-dependent features in isolation,
without regard to the other classes.

2. CLASS-SPECIFIC APPROACH

When applying CSM, one must find class-dependent signal
processing to produce features that characterize each class
or sub-class. We seek an automatic means of optimizing the
matrixA for a given subclass. We first review CSM.

2.1 Class-Specific Method (CSM)

Let there beM classes among which we would like to clas-
sify. The class-specific classifier, based on the PPT, is given
by

argmax
m

pp(x|Hm),

where pp(x|Hm) is the projectedPDF (projected from the
feature space to the raw data space). The projected PDF is
given by

pp(x|Hm) = Jm(x,Am,H0,m) p̂(zm|Hm), (3)

wherep̂(zm|Hm) is the feature PDF estimate (estimated from
training data) and the J-function is given by

Jm(x,Am,H0,m) =
p(x|H0,m)

p(zm|H0,m)
, (4)

and H0,m are class-dependent reference hypotheses. The
class-dependent featureszm are computed from the spectral
vectory through the class-dependent subspace matricesAm,
as

zm = C(A′
my), (5)

whereC is the feature conditioning transformation. Note that
the J-function is a fixed function ofx precicely defined by
the feature transformation fromx to z and the reference hy-
pothesesH0,m. It is the “correction term” that allows feature
PDFs from various feature spaces to be compared fairly be-
cause the resulting log-likelihood function is a PDF on the
raw data spacex. The J-function is a generalization of the
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determinant of the Jacobian matrix in the case of a 1:1 trans-
formation. The PPT guarantees thatpp(x|Hm) given by (3) is
a PDF, so it integrates to 1 overx regardlessof the reference
hypothesisH0,m or the feature transformation producingzm
from x. It is up to the designer to chooseH0,m andAm to
makepp(x|Hm) as good an estimate ofp(x|Hm) as possible.
The designer is guided by the principle that ifzm is a suffient
statistic forHm vs. H0,m, thenpp(x|Hm) will equal p(x|Hm)
(providedp̂(zm|Hm) is a good estimate). We can also think
of it as a way of imbedding a low-dimensional PDF within a
high-dimensional PDF.

We have good reason, as we shall see, to use a common
reference hypothesis,H0, which simplifies the classifier to

argmax
m

Jm(x,Am,H0) p(zm|Hm) (6)

where the J-functionJm(x) now depends only onAm. Note
that in contrast to other class-dependent schemes using pair-
wise or tree tests, CSM is a Bayesian classifier and has
the promise CSM of providing a “drop-in” replacement to
the MEL-cepstrum based feature processors in existing ASR
systems.

2.2 Finding a class-specific subspace

We are interested in adapting the matrixA to an individ-
ual class. We propose the strategy of selectingAm to max-
imize the total log-likelihood of the training data using the
projected PDF. Let

L(x1,x2 . . .xK ;Am) =
K

∑
i=1

logpp(x
i |Hm) (7)

whereK is the number of training vectors. If we expand
pp(x|Hm) ,

pp(x|Hm) =

[

p(x|H0)

p(zm|H0)

]

p̂(zm|Hm),

whereH0 is the independent Gaussian noise hypothesis, we
see that the termp(x|H0) is independent ofAm. Thus, to
maximizeL, we need to maximize the average value of

log p̂(zm|Hm)− logp(zm|H0). (8)

Our approach is to assume that the first term in (8) is only
weakly dependent onAm and concentrate on the second
term. Given the simplicity of the reference hypothesisH0, the
second termp(zm|H0) can be known, either in analytic form
or in an accurate analytic approximation [5]. Thus, it is easy
to analyze its behavior asAm changes. We have obtained the
first derivatives of logp(zm|H0) with respect to each element
of Am. We proceed, then by ignoring the term ˆp(zm|Hm) and
maximizing the function

Q(x1,x2 . . .xK ;Am) = −
K

∑
i=1

logp(zi
m|H0). (9)

The change in ˆp(zm|Hm) can be minimized asAm is changed
by insisting on an orthonormal form forAm. Thus, by max-
imizing L (7) under the restriction thatAm is orthonormal,
we approximately maximizeL. We apply the following con-
straints toAm:

• Orthonormality . The columns ofAm are an orthonor-
mal set of vectors. We use a orthonormality under the
inner product

< x,y >=
N/2

∑
i=0

εixiyi ,

whereεi has the value 2 except for the end bins (0 and
N/2) where it has value 1. Ortho-normality under this
inner product means that the spectral vectors will be or-
thonormal if extended to the fullN bins. Use of orthonor-
mality helps to stabilize the term ˆp(zm|Hm) asAm is var-
ied.

• Energy sufficiency. The energy sufficiency constraint
means that the total energy inx,

E =
N

∑
i=1

x2
i

can be derived from the features. Energy sufficiency is
important in the context of floating reference hypotheses
[2]. In order that the classifier result is scale invariant,
we need energy sufficiency. With energy sufficiency, the
term

p(x|H0)

p(zm|H0)

will be independent of the variance used on theH0 ref-
erence hypothesis. Note thatE = e′1y/N, wheree1 =
[1,2,2,2. . . ,2,1]′, which is composed of the number of
degrees of freedom in each frequency bin. Thus, energy
sufficiency means that the column space ofAm needs to
contain the vectore1.

2.2.1 Class-specific iterated subspace (CSIS)

Since we would like the feature set created by projecting
onto the columns ofA to characterize the statistical varia-
tions within the class, a natural first step is to use principal
component analysis (PCA). To do this, we arrange the spec-
tral vectors from the training set into a matrix

X = [y1y2 · · ·yK ],

whereK is the number of training vectors. To meet the en-
ergy sufficiency constraint, we fix the first column ofA to be
the normalizede1

ẽ1 =
e1

‖e1‖
.

To find the best linear subspace orthogonal toe1, we first
orthogonalize the columns ofX to e1 Xn = X− ẽ1(ẽ1

′X).
LetU be the largestP singular vectors ofXn, or equivalently
the largestP eigenvectors ofXnX

′
n. We then setA = [ẽ1U].

We then proceed to maximize (9) using an iterative approach.
We use the term class-specific iterated subspace (CSIS) to
refer to the columns ofAm obtained in this way.

3. EXPERIMENTAL APPROACH

3.1 Data Set

We used the TIMIT [6] data set as a source of phonemes,
drawing all of our data from the “training” portion. TIMIT
consists of sampled time-series (in 16 kHz .wav files) of



scripted sentences read by a wide variety of speakers and in-
cludes index tables that point to start and stop samples of
each spoken phoneme in the text. There are 61 phonemes in
the database, having a 1 to 4 character code. We use the term
dataclassto represent the collection of all the phonemes of
a given type from a given speaker. The average number of
samples (utterences) of a given speaker/phoneme combina-
tion is about 10 and ranges from 1 up to about 30 for some
of the most common phonemes. We used speaker/phoneme
combinations with no fewer than 10 samples.

3.2 Cross-Validation

In all of our classification experiments, the utterences of
a given speaker/phoneme were divided into two sets, even
(samples 2,4,6 ...) and odd (samples 1,3,5...). We conducted
two sub-experiments, training on even, testing on odd, then
training on odd, testing on even. We reported the sum of the
classification counts from the two experiments.

3.3 Processing

We now describe the processing for the features of the MEL
frequency cepstral coefficient (MFCC) classifier and CSIS.
In order to concentrate on the basic dimension reduction step
(equation 2), the simplest possible processing and PDF mod-
eling was used. Each step in the processing is described be-
low, in the order in which it is processed.

3.3.1 Resampling

We pre-processed all TIMIT .wav files by resampling from
16 kHz down to 12 kHz. Phoneme endpoints were corre-
spondingly converted and used to select data from the 12 kHz
time-series.

3.3.2 Truncation

The phoneme data was truncated to a multiple of 384 sam-
ples by truncating off the end. Those phoneme events that
were below 384 samples at 12 kHz were dropped. Doing
this allowed us to use FFT sizes of 48, 64, 96, 128, or 192
samples, which are all factors of 384.

3.3.3 FFT processing

We computed non-overlapped unshaded (rectangular win-
dow function) FFTs resulting in a sequence of magnitude-
squared FFT spectral vectors of lengthN/2+ 1, whereN is
the FFT size. The number of FFTs in the sequence depended
on how many non-overlapped FFTs fit within the truncated
phoneme utterance.

3.3.4 Spectral normalization

Spectral vectors were normalized after FFT processing. For
non-speaker-dependent (MEL cepstrum) features, the spec-
tral vectors were normalized by the average spectrum of all
available data.

For CSIS (speaker-dependent) features, the spectral val-
ues for each speaker/phoneme combination were normalized
by the average spectrum for that speaker/phoneme. In clas-
sification experiments the average spectrum was computed
from the training data to avoid issues of data separation.

3.3.5 Subspace Projection (Matrix Multiplication)

Next, the spectral vectors, denoted byy, were projected onto
a lower dimensional subspace by a matrix as in (2) resulting
in feature vectors, denoted byw.

For MFCC, the columns ofA were MEL frequency band
functions. The number of columns in matrixA wasNc + 2
including the zero and Nyquist half-bands.

For CSIS,A was an orthonormal matrix determined
from the optimization algorithm. For CSIS, the number of
columns ofA wasP+1 whereP is the number of basis func-
tions in addition to the first column ˜e1.

3.3.6 Feature Conditioning

From a statistical point of view, feature conditioning has
effect on the information content of the features. It does,
however, make probability density function (PDF) estimation
easier if the resulting features are approximately independent
and Gaussian. For MFCC, the features were conditioned by
taking the log and DCT as in (1). For CSIS, features were
conditioned first by dividing features 2 throughP+1 by the
first feature. This effectively normalizes the features since
the first feature, being a projection ontoe1, is a power esti-
mate for the segment. Lastly, the log of the first feature is
taken. Mathematically, we have for CSIS

w = A′y,

z1 = log(w1),

zi = wi/w1, i = 2,3, . . .P+1.

3.3.7 J-function calculation

J-function contributions must be included for FFT
magnitude-squared, spectral normalization, matrix mul-
tiplication, and feature conditioning. See [7] for detailsof
these class-specific modules.

3.3.8 PDF modeling and Classification

We used a simple multivariate Gaussian PDF model, or
equivalently a Gaussian mixture model (GMM) with a sin-
gle mixture component. We assume independence between
the members of the sequence within a given utterence, thus
disregarding the time ordering. The log-likelihood value of
a sample was obtained by evaluating the total log-likelihood
of the feature sequence from the phoneme utterance. The
reason we used such simplified processing and PDF mod-
els was to concentrate our discussion on the features them-
selves. Classification was accomplished by maximization of
log-likelihood across class models. For CSS and CSIS, we
added the log J-function value to the log-likelihood value of
the GMM [2], implementing (6) in the log domain.

4. EXPERIMENTAL RESULTS

4.1 Data Description

We selected fourteen phonemes for our experiments. For
each phoneme, we chose a set of from four to seven individ-
ual speakers of the same sex. We selected phoneme/speaker
combinations that had large numbers of utterences per
speaker - a minimum of ten utterences per speaker. Thus,
each phoneme set consisted of about 60 utterences. Phoneme
sets were arranged into seven pairs for use in two-phoneme
individual speaker experiments.



4.2 Basis Function optimization

4.2.1 Validation of Assumptions

An important experiment to perform is to validate the as-
sumption used in section 2.2, that maximizingL (equation
7) can be achieved by maximizingQ in equation (9). Al-
though space does not permit presenting the results, we have
obtained overwhelming evidence that the second term in (9)
does in fact dominate.

4.2.2 Choice of FFT size and model order

The CSIS approach is parameterized by two parameters, the
FFT sizeN, and the model orderP. The MFCC method is
parameterized by the FFT sizeN, and the number of MEL
bandsNc. We chose to use the same value ofN for MFCC
and CSIS. This ensured that the only significant difference
between MFCC and CSIS would be the ability to choose
matrix Am as a function of class thanks to the PPT. Fea-
ture conditioning is also different but is not expected to con-
tribute greatly to performance differences. For fair compari-
son, we selected the FFT size to maximize the performance
of MFCC, which turned out to beN = 96. For MFCC, we
used always the optimumNc = 10.

For CSIS, we are left with deciding on the model or-
der P. Refer to figure 1. In which we see the total log-
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Figure 1: Total log-likelihood (with even-odd cross-
validation) as a function ofP for speakerMGRL0 phoneme
“N” with CSIS.

likelihood L of speakerMGRL0,phoneme “N”, as a function
of P. Even-odd cross-validation is used (section 3.2). Note
that the likelihood increases up toP= 5 then exhibits a steep
decline. This suggests that a dimension-5 subspace is opti-
mal to represent this speaker/phoneme combination. For the
individual speaker experiments, we chose model order for
each speaker/phoneme combination in the same way.

To address the phoneme-class experiments we will need
to expand the data to include all speakers of a given phoneme.
We expanded the data to all male speakers of “N”. and at-
tained a peak atP= 8. This indicates that an increase in sub-
space dimension is required. In phoneme-class experiments,
we used a constant value ofP = 8 for all phoneme classes.

4.3 Classification Experiments

We conducted seven individual speaker experiments, each in-
volving two phonemes (see section 4.1).

4.3.1 Performance metrics

Because in each experiment we used a number of individ-
ual speakers of each phoneme, it is possible to measure
both inter-speaker errors (speaker identity errors) and inter-
phoneme errors. We define the following performance met-
rics:

1. Ec is theconfusion matrixerror metric which is the num-
ber of off-diagonal elements in the confusion matrix.
Thus, it is a measure of speaker identity errors without
regard to the phoeneme.

2. Inter-phoneme errorEip counts the number of inter-
phoneme errors.

All of our experiments used strict separation between train-
ing and testing data (section 3.2). In all cases, data was sep-
arated into even and odd events (utterences). First all models
were trained on odd events, events 1,3,5, etc, and tested on
even events, 2,4,6, etc., then all models were trained on even
events and tested on odd events. The error were added to
obtain the aggregate error count.

4.3.2 Two-Phoneme Experiments.

The two-phoneme experiments were designed to test the abil-
ity to distinguish speakers of a given phoneme as well as
classify two phonemes in a limited multi-speaker environ-
ment. In each of seven the two-phoneme experiments, we
tested both CSIS and MFCC under two conditions. In single-
speaker (SS) classifier training, we separately trained a
model on each speaker/phoneme combination. In phoneme-
class (PC) classifier training, we grouped all speakers of a
given phoneme into a single phoneme class. For the SS clas-
sifiers, we measuredEc which included all errors, andEip
which counts only inter-phoneme errors. For the PC classi-
fiers, we could only measureEip.

To provide the most meaninful performance comparison,
we optimized the performance of MFCC by finding the best
combination of parametersN andNc over all seven experi-
ments. MetricEip was at a minimum atNc = 10,N = 96. For
Ec, it was close to the minimum at the same parameter set-
ting. Thus, we choseNc = 10,N = 96 as the benchmark for
comparison.

The seven experiments tested phonemes “IY” versus
“EH”, “AE” versus “EH” , “R” versus “L” , “AX” ver-
sus “AXR” , “IX” versus “IH” , “N” versus “M” , and
“DCL” versus “TCL” . Between four and seven speakers per
phoneme were used with an average of about 12 utterences
per speaker/phoneme combination. The results are plotted in
figure 2. First, CSIS-SS, withP chosen separately for each
class performed generally better than CSIS-SS(5) which uses
model order fixed atP = 5. This indicates that individually
optimized model order is better. The fact that the model or-
ders were determined individually without regard to other
classes validates is an important observation. In compari-
son to MFCC-SS, CSS-SS achieved a lowerEc in all exper-
iments. As a means of comparison, MFCC produced higher
values ofEc by 14, 22, 38, 22, 7.5, 59, 12 and 12 percent,
an average of 25.5 percent higher. Using theEip error met-
ric, for which we have no space to report detailed results,
there was not much difference between CSS-SS and MFCC-
SS. For multi-speaker training, MFCC-PC was consistently
better than CSS-PC.

4.3.3 Single-Speaker Experiments.

The single-speaker experiments were designed to test the
ability to distinguish phonemes of a given speaker. In each of
the seventeen single-speaker experiments, we gathered data
from a single speaker and between four and seven phonemes
into one classification experiment and measuredEc. The re-
sults are summarized in figure 3. CSIS does generally better
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Figure 2: Comparison of MFCC and CSIS using individual
speaker error metricEc. The experiment number is on the X
axis in the following order: “IY” versus “EH”, “AE” versus
“EH” , “R” versus “L” , “AX” versus “AXR”, “IX” versus
“IH”, “N” versus “M” , “DCL” versus “TCL”. CSIS-SS(5)
indicates CSIS with model order fixed atP = 5.

than MFCC except in two experiments where it does worse
and one where it is the same. The total number of errors
across the seventeen experiments was 435 for MFCC. We
first tried CSIS with model order fixed atP = 5 (indicated
as CSIS(5) in the figure) and acheived total errors of 385.
We then selectedP individually by maximizing the total log-
likelihood (section 4.2.2) and acheived 361 errors, a reduc-
tion of 6.5 percent and an improvement of 20 percent over
MFCC. This is significant because in addition to matrixA
being a function of class, the feature dimension is also a func-
tion of class.

4.4 Discussion of Results

We can draw some meaningful conclusions from the exper-
iments. First, we see that both in discriminating phonemes
of a given speaker and in discriminating speakers of a
given phoneme, CSIS is clearly better than MFCC. On the
other hand, MFCC is generally better in speaker-independent
phoneme discrimination. The reason may lie in the shrink-
ing of the linear subspace as we restrict ourselves to a single
speaker/single phoneme. When the subspace is limited, CSIS
may be able to find a better statistical model of the distribu-
tiuon. A second piece of evidence that supports this is the
fact that the highest improvement of CSIS-SS over MFCC-
SS was obtained in the experiment “N-vs-M” which is one of
the most difficult problems in ASR, an indication that CSIS
produces a better PDF estimate at the center of the distri-
butions. Thus, when classes are more close to each other,
i.e. overlapped, the better PDF estimate will be more impor-
tant, because the optimal decision boundary is given by the
true likelihood ratio. However, since MFCC has evolved for
phoneme discrimination, it performs better than CSIS in the
inter-phomeme areas. When two phonemes are very similar,
discrimination occurs “near the peak” where CSIS performs
better.

Future work should determine how can the strengths of
both CSIS and MFCC be best utilized. The evidence we pro-
vided suggests that the most promising approach for apply-
ing CSIS to multi-speaker experiments may lie in the ability
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Figure 3: Comparison of MFCC and CSIS in single-speaker
experiments using error metricEc. The experiment number
is on the X axis in the following order: fmem0 fceg0 mkag0
fapb0 mcxm0 mmea0 fdaw0 mgrl0 mkdd0 msat1 mbma1
mprk0 fklh0 mjma0 mbth0 mbcg0 mmlm0, which is in or-
der of increasing MFCC error. CSIS(5) indicates CSIS with
model order fixed atP = 5.

to cluster speakers into like-sounding groups, which can be
represented by separate low-dimensional CSIS models.
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